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ABSTRACT
The dilemma zone (DZ) has been physically characterized based on two
divergent definitions: Type I and Type II. However, treating DZ differently
based on these definitions may lead to inaccurate results of DZ bound-
ary and subsequent safety analyses. Moreover, an integrated empirical
assessment of Type I and Type II definitions for consistency in boundary
quantification is not yet well-addressed. To this end, we empirically ana-
lyzed the two DZ definitions by comparing their boundary dynamics with
approach velocity and time of day. First, we proposed a rule-based match-
ing methodology with 92% accuracy to match actuation events between
the advance and stop-bar detectors. This methodology was then applied
to process two months of high-resolution event data from an intersection
approach, yielding 28,700 vehicle arrivals on yellow. Results showed that
13.2% of approaching vehicles fall into an indecision zone or make Type
I-contrary stop/run decisions at the yellow onset. The Type I and Type II
DZ boundaries were temporally segregated and did not significantly over-
lap. Our novel findings indicate a lack of consistency in quantifying DZ and
emphasize a need for data-driven quantification of theDZ boundary and its
dynamics.
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Introduction

Drivers often face a dilemma as to whether they should stop or cross when presented with the yellow
indication at intersections. This dilemma has been physically characterized by a zone or portion of the
road segment upstreamof the intersection using twodefinitions: the Type I and Type II dilemma zones
(DZ). An integrated empirical assessment of these two types for consistency is not well-addressed in
the existing literature, making the consistency check and correct quantification of DZ important for
accurate analyses of signal timing parameters, detector placement, and driver’s stop/run decisions at
the yellow onset.

Figure 1 summarizes approaches in the existing literature to quantify Type I and Type II DZ. Accord-
ing to the Type I definition–based on the concept proposed by Gazis, Herman, and Maradudin (Gazis,
Herman, and Maradudin 1960) and known as the GHMmodel–vehicles at yellow onset cannot safely
stop before the stop line or cross the intersection during the yellow interval. The Type I definition
also recognizes an option zone upstream of the intersection where vehicles can safely stop or go. The
location of Type I DZ and option zone for any vehicle is determined based on the minimum stop-
ping distance, themaximumclearing distance, and the vehicle’s position at yellowonset. Dependency
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Figure 1. Quantification of Type I and Type II dilemma zones.

on such deterministic parameters for quantifying the Type I DZ is a major drawback because per-
fect assumptions or a priori knowledge of these parameters are required (Sharma, Bullock, and Peeta
2011; Wei et al. 2011). Moreover, Type I DZ is based on laws of physics and parameters, necessitating
vehicle-specific attributes that are difficult to estimate in practice.

The Type II DZ, labeled so by Urbanik and Koonce (2007), is an ‘indecision zone’ at an intersection
approachand is quantified via twoapproaches: (a) theprobabilisticmethodbyZegeer andCurbaDeen
(1978) and (b) the travel time-basedmethodbyChang,Messer, and Santiago (1985). Zegeer andCurba
Deen (1978) characterized this indecision zone as the approach where between 10% and 90% of vehi-
cles choose to stop at the yellow onset. Studies have quantified the travel time-based DZwith a rule of
thumb: the location before the intersection stop-bar where the travel time is between 2.5 and 5.5 sec
(Zhang, Fu, and Hu 2014; Bonneson et al. 2002; Kang, Rahman, and Lee 2020). The Type II DZ bound-
ary quantified by a probabilistic method was constant despite varying approach velocities (Rahman,
Kang, andBiswas 2021).Moreover, past studies reported a significant variation inDZboundary for such
probabilistic quantification (Sharma, Bullock, and Peeta 2011). Similarly, the travel time-based Type II
definition–generalized in terms of the time to intersection stop line–does not account for the impre-
cision with which drivers perceive measures such as speed and distance at the yellow onset (Hurwitz
et al. 2012).

Given the two divergent definitions to quantify DZ and their limitations, an integrated empirical
assessment of both types for consistency is lacking in the existing literature. Zhang, Fu, and Hu (2014)
point out that treating Type I and Type II DZ boundaries differently–as done in existing studies–may
lead to inaccurate results of DZ-related and subsequent safety analyses. When defined based on dis-
tance from the stop line, there is also a potential overlap between the Type I and Type II DZ (Zhang,
Fu, and Hu 2014). However, this potential overlap is still unexplored in existing literature. This study’s
primary focus and contribution is an integrated empirical analysis of the four DZ quantifications: Type
I DZ, Type I option zone, Type II probabilistic DZ, and Type II travel time-based DZ. To this end, we
propose a novel model using a large dataset of high-resolution event data for matching detection
eventsbetween the stop-bar andadvance locations toestimate theparameters of theType I definition.
This model also contributes to existing literature by advancing the use of high-resolution events data
to estimate individual vehicle parameters to characterize the Type I DZ physically. In addition, this
study–for the first time–assesses the variation and overlap in Type I and II DZ by approach velocity
and time of day to explore the dynamic nature of the zones’ boundaries.
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The remainder of this paper is structured as follows. The Literature Review section summarizes prior
studies on dilemma zone analysis. The Data Collection section introduces the study site and high-
resolution event data. The following section presents data processing, a rule-based methodology for
matching detection events, and a performance assessment of this methodology. Analysis of the Type
I and II approaches to quantify dilemma zones is then conducted, followed by results and discussions
of the findings. Finally, the concluding remarks of this study are drawn.

Literature review

Table 1 highlights some notable studies on DZ analysis with corresponding data sources and sample
sizes used for assessment. Note that the existing studies on assessing DZ have diverged into two sep-
arate paths: the Type I and the Type II definitions. The primary data sources for DZ assessment have
been speed radar (Papaioannou 2007), radar-based wide area detector (Sharma, Bullock, and Peeta
2011; National Academies of Sciences andMedicine 2012), trajectory data (Wei et al. 2011), microwave
radar sensors (Rahman, Kang, and Biswas 2021), and video recordings (Gates and Noyce 2010; Hurwitz

Table 1. Summary of studies on dilemma zone assessment.

Study Focus Location Data source Sample size

Papaioannou
(2007)

Factors influencing
drivers’ behavior
in Type I DZ

1 approach of
T-shaped
signalized
intersection in
Greece

Speed radar and
video recordings
(315 hr)

2,452 vehicles at
yellow onset

Gates and Noyce
(2010)

Influence of vehicle
type on driver
behavior in Type
II DZ

6 signalized
intersections in
Wisconsin

Video recordings
(43 hr)

1,275 vehicles in
dilemma zone

Sharma, Bullock,
and Peeta (2011)

Dilemma zone
hazard function
for Type II DZ

1 high-speed
signalized
intersection in
Noblesville,
Indiana

Radar-based wide
area detector
(102 days)

2,870 cars during
yellow

Wei et al. (2011) Dynamic factors for
Type I DZ

4 high-speed
signalized
intersections in
Ohio

Trajectory data
extracted from
video recordings
(46 hr)

1,445 vehicles
during yellow

Hurwitz et al.
(2012)

Driver behavior in
Type II DZ using
fuzzy logic

5 high-speed
signalized
intersections in
Vermont

Video recordings
(510 hr)

1,900 vehicles
during yellow

National
Academies of
Sciences and
Medicine (2012)

Timing yellow and
all-red intervals
based on Type II
DZ

83 intersection
approaches from
5 US states

Video recordings
(328 hr)

7,482 vehicles
during yellow

Savolainen,
Sharma, and
Gates (2016)

Factors influencing
Type II DZ

87 intersection
approaches from
5 regions in the
US

Video recordings
and wide area
detectors (3-5
hr/site)

5,121 vehicles at
yellow onset

Kang, Rahman, and
Lee (2020)

Type II DZ length
estimation

15 high-speed,
rural
intersections in
Alabama

Video recordings
(1,500 hr)

Not reported

Rahman, Kang, and
Biswas (2021)

Driver’s stop/go
behavior and DZ
boundaries

1 high-speed
isolated
signalized
intersection in
Mobile, Alabama

Microwave radar
sensors (14 days),
high-resolution
signal event data

2,495 vehicles
during yellow

This study Exploratory
analysis of Type I
& Type II DZ

1 signalized
intersection in
Phoenix, Arizona

High-resolution
event data (2
months)

28,700 vehicle
arrivals at yellow
onset
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et al. 2012; Kang, Rahman, and Lee 2020; Savolainen, Sharma, and Gates 2016). These data sources suf-
fer from difficulties in data processing and require concurrent video recordings for validation, making
it difficult to obtain a large sample size for assessing DZ boundary.

This study uses high-resolution event data to obtain a relatively large dataset of detector actuations
that can be processed and analyzed for DZ assessment. High-resolution event data comprises sig-
nal phase change and detector actuation events, which has facilitated the estimation of performance
measures such as queue length (Pudasaini, Karimpour, andWu 2023), red light running severity (Jalali
Khalilabadi, Karimpour, and Wu 2023), pedestrian delay (Karimpour et al. 2022), and pedestrian vol-
ume (Li and Wu 2021). For DZ analysis, however, using high-resolution event data requires a method
for matching actuation events between the advance and stop-bar detectors. Existing studies using
suchdata have adopted awindow-searching-basedmethodology tomatchdetection events between
advance and stop-bar or stop-bar and entrance detectors (Wu et al. 2013; Lu et al. 2015; Ding et al.
2016; Ren et al. 2016; Chen et al. 2017). Some common limitations of these approaches include giv-
ing up the search for a matching pair in case of multiple matches, estimation of velocity using an a
priori known effective vehicle length, exclusion of long vehicles, and exclusion of left-turning vehi-
cles. Furthermore, to the best of the authors’ knowledge, the accuracy of the matching pairs has not
been reported in any of these prior studies. Hence, we propose a novel rule-based model for match-
ing detection events between advance and stop-bar detectors in this study. The subsequent analysis
of Type I and Type II DZ using a large dataset is done based on matching pairs of detector actuation
events predicted by this methodology.

Data Collection

Study site

The westbound approach of Indian School Rd and 19th Ave in Phoenix, Arizona, was selected as the
study site for empirical analysis of DZ.We selected this intersection for two reasons. First, Indian School
Rd is one of the busiest arterials in Phoenix, providing a direct connection between the I-17 highway
and the US 51 highway. In the vicinity of 19th Ave, Indian School Rd had an annual average daily traffic
of 44,500 vehicles in 2022. Second, the intersection at Indian School Rd and 19th Ave was equipped
with lane-by-lane loop detectors at the stop-bar and advance locations. Timestamped events data
from the intersection’s signal controllers–including actuations on detectors–is archived in real-time
by the City of Phoenix Street Transportation Department.

Figure 2 presents the study site’s westbound approachwith layout and detector configuration. The
approach has lane-by-lane loop detectors on three through lanes at the stop-bar and advance loca-
tions. The left-turn lane has front and rear detectors. Advance detectors are 5 ft (1.5 m) long, whereas
stop-bar detectors are 40 ft (12.2m) long. Thedistancebetween the stop line and the advancedetector
is 300 ft (91.4 m). The speed limit of the approach is 35 mph (56 km/hr).

High-resolution event data

High-resolution event data in the formof timestamped events from the signal controller anddetectors
were collected fromTransSuite, a centralized trafficmanagement systemarchiving real-timedata from
theCity of Phoenix intersections. Timestampedevents comprise signal phase changes, detector actua-
tions, and communication attempts at a resolution of 0.1 sec. The signal phase change events contain
each phase’s start and end times of green, yellow, and red intervals. The detector actuation events
contain the timestamp at which a vehicle actuated a detector ‘on’ and ‘off.’ Similarly, the communica-
tion attempt events contain information on communication loss in the signal controller, making this
dataset useful to assess potential loss in signal phase changes anddetector actuations during a specific
period.



TRANSPORTMETRICA B: TRANSPORT DYNAMICS 5

Figure 2. Study intersection with detector layout and configuration (source: Google Earth, 2023).

This study divided the available high-resolution events datasets into two groups. The first dataset,
collected for 7 hours from threeweekdays (6/12/2022, 6/14/2022, 3/27/2023), had concurrent ground-
truth video recordings available in the TransSuite system. The availability of both event datasets
and concurrent videos made this dataset suitable to assess the performance of the proposed rule-
basedmodel formatching actuation events between the stop-bar and advance detectors. The second
dataset, used for analyzing DZ, was collected throughout January and February 2023. Details of
processing these high-resolution event data are presented in the following section.

Matching detection events

Figure3outlines theoverall framework andmethodological steps in this study. Following site selection
and high-resolution event data collection, the data is processed, and actuations at the yellow onset
are filtered. Next, a Rule-based Algorithm for Matching Detections (RAMD) is proposed and tested
for matching detection events between the advance and stop bar detectors. The RAMD yields pairs
of matched vehicle detections. Each pair represents a single vehicle, with one detection each at the
advance and the stop bar detector locations. By analyzing these detection pairs, the travel time for
each vehicle from the advance detector to the stop bar is calculated. Finally, the parameters of Type I
DZ and boundaries for each DZ quantification model are computed and compared.

The following sections discuss the data processing framework and the proposed rule-basedmodel
for matching actuation events. As shown in Figure 4, the overall data processing was carried out in
three steps: pre-processing rawhigh-resolutioneventdata, processing signal phase changeanddetec-
tor actuation events, and filtering actuation events at yellow onset. Then, the rule-based model is
proposed, and its performance evaluation is conducted before applying the data processing frame-
work and the model to the large dataset for DZ analysis.
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Figure 3. Study Framework.

Data Processing

The available datasetwas first segregated into individual hours for data pre-processing. An assessment
of communication loss and a visual check of data continuity plots for signal phase changes and detec-
tor actuation provided a data quality check for further processing. The signal phase change events and
detector actuation events datasets were loaded, and parameters of interest were computed for hourly
datasets without communication loss.

Table 2 lists the indices, sets, and parameters used throughout this study. With signal phase
changes, the timestampsof yellow (Tyc ), red (Trc), andgreen (T

g
c ) indications for eachcycle alongwith the

minimumandmaximumcycle start and end times (the first and last yellow indication in the hour)were
stored. Each cycle was assumed to start on the yellow indication for data processing. Then, the detec-
tor actuation events were filtered to include only the actuations within the minimum and maximum
limits of cycle start times.

The signal phase changes and detector actuation datasets were merged, and the dataset was split
for computing actuation parameters on each through lane. Let Toi and Tfi be the timestamps of actua-
tions ‘on’ and ‘off’ for eachdetector. Occupancy time (τDi ), headway (τ

H
i ), andgap (τ

G
i ) as definedby Eq.

(1), (2), and (3), respectively, were computed for actuations on each detector. Next, the signal change
during actuation (SCAi ∈ {YY , YR, RR, RG,GG,GY}) is introduced as an important parameter denoting a
combination of the changes in signal indication when a particular actuation is turned ‘on’ and ‘off.’
For instance, SCAi ∈ {GG} indicates that actuation i started on the green indication and ended on the
green; SCAi ∈ {RG} indicates that actuation i started on the red indication and ended on the green.
Pudasaini, Karimpour, and Wu (2023) found that SCAi when used in conjunction with occupancy time
yields accurate information about a vehicle’s stop/rundecision over a detector. In general, SCAi ∈ {GG}
have a low occupancy time, implying that vehicles corresponding to such actuations crossed the
detector. Themost useful case is SCAi ∈ {RG}, which usually has a high occupancy time, meaning such
actuations correspond to vehicles actuating the detector on red, stopping before the stop line, and
leaving the detector on the green; in other words, these vehicles stopped over the stop bar. Hence, a
vehicle i’s stop/run decision can be accurately known using the combination of signal change during
actuation and occupancy time parameters. For a detailed overview and empirical analysis of SCAi with
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Figure 4. Data processing flowchart.

respect to τDi , τ
H
i , and τGi parameters, interested readers are referred to Pudasaini, Karimpour, andWu

(2023).

τDi = Tfi − Toi ∀i (1)

τHi = Toi+1 − Toi ∀i (2)

τGi = Toi+1 − Tfi ∀i (3)

Upon computation of parameters, the datasets are merged again for all through lanes. For each
actuation, the arrival in yellow (AIY) of the current cycle and the time until yellow (TUY) of the next
cycle are computed using equations (4) and (5), respectively. Since the focus is on DZ analysis, for
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Table 2. Notations used in this study.

Notation Description

Indices
i Vehicle or detector actuation
c Cycle
o, f Detector ‘on’ and ‘off’ events
y, r, g Yellow, red, and green indication events
Sets
SCA Signal change during actuation for vehicle i; SCA ∈ {YY , YR, RR, RG,GG,GY}
Parameters
Tyc , Trc , T

g
c Timestamp of yellow, red, and green indications for cycle c

Toi , T
f
i Timestamp of actuation ‘on’ and ‘off’ for vehicle i

τDi Occupancy time for actuation i (sec)
τHi Time headway between detector actuation i and i+ 1 (sec)
τGi Time gap between detector actuation i and i+ 1 (sec)
AIYi , AIY ′

i Arrival in yellow of actuation i at advance and stop-bar detectors (sec)
TUYi , TUY ′

i Time until yellow of actuation i at advance and stop-bar detectors (sec)
AIYcrit , AIY ′

crit Critical arrival in yellow of actuation i at advance and stop-bar detectors (sec)
TUYcrit , TUY ′

crit Critical time until yellow of actuation i at advance and stop-bar detectors (sec)
γ Yellow interval of intersection (sec)
t′min , t′max , t′ideal Minimum, maximum, and ideal travel time for actuation i to travel from advance detector to rear detector (sec)
tmin , tmax Minimum and maximum travel time for actuation i to travel from advance detector to stop-bar detector (sec)
tstopideal , t

run
ideal Ideal travel time from advance detector for actuation i to stop at or run over stop-bar detector (sec)

Vi Approach velocity of vehicle i between advance and stop-bar detectors (ft/sec)
ti Travel time of vehicle i between advance and stop-bar detectors (sec)
D′ Distance between the rear ends of advance and stop-bar detectors (ft)
D Distance between intersection stop line and rear end of advance detector (ft)
d Distance between intersection stop line and rear end of stop-bar detector (ft)
Xpi Position of vehicle i from the intersection stop line at yellow onset (ft)
δi Perception-reaction time of vehicle i (sec)
astopi Deceleration rate of vehicle i stopping at the stop line (ft/s2)
aruni Acceleration rate of vehicle i running over the stop line (ft/s2)
V85 85th percentile speed of intersection approach (ft/sec)
αi Binary variable for stop/run decision of vehicle i
astopcrit Maximum deceleration for running vehicles (ft/s2)
aruncrit Maximum acceleration for stopping vehicles (ft/s2)
Xsi Minimum stopping distance for vehicle i (ft)
Xci Maximum clearing distance for vehicle i (ft)

vehicles actuating a detector after the indication turns yellow, AIY indicates the passage of the yellow
indication time at which a vehicle arrived at the detector. Conversely, TUY indicates the time left until
the yellow indication of the next cycle begins. In the final step of processing events, the dataset is
filtered for all events with the actuation ‘on.’ Here, we combine the through-lane actuation events
with the actuation ‘on’ events on the left-turn lane. Additionally, all actuation events are assigned an
actuation index.

AIYi = Toi − Tyc ∀i (4)

TUYi = Tyc+1 − Toi ∀i (5)

Once processing of high-resolution events is complete, the final step of data processing is filtering
outpotential actuations susceptible toDZ.At the advance location,we filter actuationswithAIYcrit ≤ γ

or TUYcrit ≤ tideal , where γ = 3.6 is the duration of the yellow interval and tideal = 6 is the approximate
ideal travel time from the advance detector to the intersection stop line at the speed limit, i.e. travel-
ing 310 ft (94.5 m) at 35 mph (56.3 km/hr). This filtering ensures that all vehicle arrivals at the yellow
onset from the intersection stop line to a point beyond the advance location are captured. The filter-
ing parameters at the stop-bar detectors were SCA, AIY, and TUY. All SCA except ‘GG’ and actuations
with higher AIY were filtered out at the stop-bar, as vehicles corresponding to these actuations were
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not subject to DZ when crossing the intersection stop line. Further, actuations with AIY ′
crit ≤ 12 or

TUY ′
crit ≤ 1.5 were retained as the potential matches for actuations filtered at the advance location.

AIY ′
crit ≤ 12 at the stop-bar location ensures potential matches for vehicles that decelerate down-

stream of the advance location and decide to stop before the intersection stop line. TUY ′
crit ≤ 1.5 is

for stop-bar actuations that face the yellow onset between the intersection stop line and the rear of
the stop-bar detector. Finally, the three sets of detector actuation indiceswith their corresponding fea-
tures in the merged dataset were passed to the rule-based model for matching detections between
the advance and stop-bar detectors.

Rule-based Algorithm forMatching Detections (RAMD)

We manually verified the matches from video recordings available for 7 hours to obtain a ground-
truth match of actuations between the stop bar and advance locations. Since each vehicle in the
final dataset obtained from data processing was assigned an actuation index, the objective was to
get paired sets of actuation matches between (a) advance and left-turn rear detector and (b) advance
and stop-bar detector. The proposed rule-basedmodel relies on a set of minimum andmaximum val-
ues of travel time that–for each advance actuation–constrains the search space for a set of stop-bar
actuations.

Matching Left Lane Advance Actuations with Left-Turn Lane Rear Actuations

We assume that vehicles changing lanes to the left-turn lane do so only from the left-most through
lane, as we found no vehicle changing lanes to the left-turn lane from the middle through lane. From
observation of available videos by a trained individual, we observed approximately 14% of actuations
on the left lane’s advancedetector opting to take a left turn at the intersection.Hence, the first step is to
match theactuationson the left lane’s advancedetectorwith thoseon the left-turn lane’s reardetector.
The travel time from the left lane’s advance detector to the left-turn lane’s rear detector was analyzed
based on 20 sample matches verified from videos. Table 3 summarizes the descriptive statistics of the
travel time between verified actuation matches at the left-turn advance detector and rear detector.
The minimum (t′min) and maximum (t′max) values of travel time for limiting the search space for the
set of rear actuations were taken as 4 sec and 7 sec, respectively. Similarly, the ideal travel time (t′ideal)
of 5.3 sec was chosen based on the mean travel time for computing the strength of a matching pair.
The matching strength between a match pair is the inverse of the difference between the travel time
between the pairs and t′ideal . The rule-based algorithm for matching detections (RAMD) between the
advance and the rear locations is presented in Table 4. In caseswheremultiplematch cases of advance
actuation are found for a rear actuation index, thematching pair with the highestmatching strength is
selected. The final output is a set of actuations on the left lane’s advance detector that take a left turn

Table 3. Descriptive statistics of travel time between video-verified detection matches

Advance to stop-bar detector

Parameters
Left-lane advance
to rear detector Stopping Running

Sample size 20 143 160
min 4.60 4.40 3.10
25th percentile 4.90 5.80 4.00
median 5.30 6.50 4.50
mean 5.34 6.58 4.63
75th percentile 5.70 7.20 5.03
max 6.50 10.10 8.00
95% confidence interval [5.07, 5.61] [6.4, 6.75] [4.5, 4.76]
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Table 4. Rule-based algorithm for matching detection events.

Start
Input dataset: final processed dataset
Input actuation sets: advance (S), stop-bar (S′), and rear (S′′) actuations
Input parameters: t′min , t′max , t′ideal , tmin , tmax , t

stop
ideal , t

run
ideal

Initialize: vectors to contain initial match pairs (M) and final match pairs (M′)
//match actuations between advance and rear detectors
For i in S do

Initialize: vector to contain candidate match pairs (C)
For k in S′′ do

t′ik = T ′
k − Ti // travel time between i and k actuations

If t′min ≤ t′ik ≤ t′max
MSik = 1/(t′ik − t′ideal)C[k] = [k,MSik ] // append vector of rear actuation index andmatching strength toC
C[k] = [k,MSik ] // append vector of rear actuation index andmatching strength toC

End Loop
If C is not null // potential match pair found for advance-rear actuations

M′[i] = C[k]
// processM′[i] to select the highest matching pairs and get set Si with rear actuation matches
S = S − Si // update advance set to exclude rear set matches
//match actuations between advance and stop-bar detectors
For i in S do
Initialize: vector to contain candidate match pairs (C)
For j in S′ do // set of stop-bar actuations on the same lane

tij = Tj − Ti // travel time between i and j actuations
If tmin ≤ tij ≤ tmax
If αi = 0 // decision to stop

MSij = 1/(tij − tstopideal)
Else // decision to run

MSij = 1/(tij − trunideal)
C[j] = [i,MSij] // append vector of advance actuation index andmatching strength toC

End Loop
If C is not null // potential match pair found for advance-stop-bar actuations

M′[i] = C[k]
// processM′[i] to select the highest matching pairs and get set match pairs (S′ , S)
End

to the rear detector. This set of rear actuations can now be removed while matching actuation events
between advance and stop-bar detectors.

Matching Advance Actuations with Stop-bar Actuations

From observation of available videos by a trained individual, the actuations on the advance detector
were matched with that on the stop-bar detector. Of 303 matches identified between the advance
and stop-bar detectors at yellow onset, 160 vehicles decided to run through the intersection stop line,
whereas the remaining 143 decided to stop. Of the 160 running cases, 113 vehicles were yellow light
runners (YLR), whereas the remaining 47were red light runners (RLR).We also segregated thematches
based on whether the vehicles were car-following at the advance location. Brackstone andMcDonald
(1999), in their comprehensivehistorical reviewof car-following, identifieda commonlyused threshold
of 1.5 s for time headway to define car-following. Based on this limit of car-following, 61 out of 242
samples were observed to be following the leading vehicle at the advance location. We selected car-
following, stop/run decisions, and YLR/RLR decisions from the dataset ofmanually verifiedmatches as
the rules for building a rule-based model.

The robustness of a rule-based decision tree model was assessed based on three t-tests. The
Shapiro–Wilk normality test provided evidence for the normality of each t-test. Welch’s two-sample t-
test at 0.05 level (p-value = 0.1982) failed to reject thenull hypothesis that the truedifference inmeans
between the car-following and non-car-following groups is zero. Thus, we discard the car-following
decision from our rule-based model. The second t-test at 0.05 level (p-value ≈ 0) failed to provide
evidence for the null hypothesis that the true difference in means of travel time between stopping
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and running vehicles is zero. Finally, a t-test at 0.05 level (p-value = 0.5011) failed to reject the null
hypothesis that the true difference in means of travel time between RLR and YLR equals zero.

We finalize stopping and running vehicles as two separate groups based on statistical tests con-
ducted for the abovementionedgroups. Table 3 summarizes thedescriptive statistics for travel time for
stopping and running video-verifiedmatches between advance and stop-bar locations. Theminimum
(tmin) andmaximum (tmax) values of travel time for limiting the search space for a set of stop-bar actu-
ations were taken as 3 sec and 11 sec, respectively. Similarly, the ideal travel times for stopping (tstopideal)
as 6.6 sec and for running (trunideal) as 4.6 sec were chosen based on their respective mean travel times.
The RAMD model for advance and stop-bar locations is continued in Table 4. If multiple match cases
of advance actuation index are found for an actuation index at the stop-bar detector, the algorithm
selects the matching pair with the highest matching strength.

Model performance assessment

The accuracy of the proposed RAMD model was assessed by comparing the match pairs predicted
by the RAMDmodel with the ground-truth match pairs noted from video observations. We used pre-
cision, recall, and the F1 score to quantitatively assess accuracy. The model produced 100% precision
and 95.2% recall for thematchpairs between advance and rear detectors. For thematchpairs between
advance and stop-bar detectors, themodel yielded a precision of 92% and a recall of 91.1%. Such high
accuracy in terms of precision and recall indicates that the proposed RAMDmodel produces low false
alarms and misses a small proportion of the actual match pairs during prediction.

The performance of the RAMDmodel was compared with two other commonly used methods for
matching detection events between advance and stop-bar locations. The two methods, called here-
after ‘Ding’s method’ and ‘Lu’s method,’ were based on a time window for each actuation at the
advance location, with velocity computed as a function of a known effective vehicle length (Ding
et al. 2016; Lu et al. 2015). The respective studies did not report the accuracies of the match pairs
predicted by these methods. Moreover, long vehicles were discarded in Lu’s analysis due to the
assumption of an effective vehicle length. Here, we compare the proposed RAMD model with Ding’s
and Lu’s methods and conduct a sensitivity analysis. As presented in Figure 5, the comparison based
on precision, recall, and F1 scores demonstrates the superiority of the proposed RAMD model, unaf-
fected by the assumption of an effective vehicle length. Figure 5 also shows that the transferability
of Ding’s and Lu’s method to other intersections is subject to a priori knowledge of effective vehi-
cle length, as an incorrect assumption of this parameter can heavily skew the accuracy of match
pairs.

Next, the sensitivity analysis of the proposed RAMDmodel was assessed for two critical parameters
used in the model: (a) the ideal travel time for running and (b) the ideal travel time for stopping. As
presented in Figure 6, the analysis was carried out with the F1 score as the metric. We observed that
the highest F1 score corresponded to (a) 6.6 sec for stopping and 4.6 sec for running, and (b) 6.7 sec for
stopping and 4.6 for running. Since the ideal travel time values for stopping and running in the RAMD
model were assessed based on sound statistical tests, we observe that the chosen ideal travel time
values corresponded to the highest F1 score. Figure 5 and Figure 6 demonstrate that the proposed
RAMDmodel is robust in terms of assumed parameters and superior in precision and recall compared
to existing analytical models.

Upon assessment of the accuracy and robustness of the proposed RAMDmodel, the large dataset
(two-monthperiod)was processed forDZ analysis using the framework presented in Figure 4. The final
dataset contained the features at advance and stop-bar detectors for thematch pairs predicted by the
RAMD model. The travel time between the advance and stop-bar detector can now be estimated for
a matching pair as the difference of timestamps at which the actuation was ‘on’ at the stop-bar and
advance locations. We conducted a detailed empirical assessment of Type I and Type II DZ based on
this estimated travel time and the stop/run decision for a matching pair based on the SCA parameter.
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Figure 5. Performance comparison of Ding’s and Lu’s method with the proposed RAMDmodel.

Figure 6. Sensitivity analysis of the proposed RAMDmodel.
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Dilemma zone analysis

Type I DZ andOption Zone

We subjectively define the ‘approach’ of the intersection as the road space between the stop-bar and
advance detector locations. The approach velocity of a vehicle (Vi) can thenbe computedbasedon the
time taken to traverse the distance between the advance and stop-bar detectors (ti), as shown in Eq.
(6). Recall that this travel time is output from processing the dataset for the matching pairs obtained
from the RAMDmodel.

Vi = D′

ti
∀i (6)

Withapproachvelocity known, thevehicle’s position fromthe stop lineat theyellowonset canbeaccu-
rately estimated based on whether the vehicle arrived at the advance and stop-bar locations before
or after the indication turned yellow. At the yellow onset, a vehicle’s position can be in one of three
areas: (a) between the stop line and the end of the stop-bar detector, (b) between the stop-bar and
advance detectors, and (c) beyond the advance detector. A vehicle’s position in an area can be identi-
fied based on each detector’s AIY and TUY parameters. In the matched dataset, AIYi < TUYi indicates
vehicle i’s arrival at the advance location after the indication turns yellow, implying that the vehicle’s
position is beyond theadvancedetector.On theother hand,AIYi > TUYi implies vehicle i’s arrival at the
advance locationbefore the indication turns yellow, so two further cases arepossible here.AIY ′

i < TUY ′
i

indicates arrival at the stop-bar after the indication turns yellow, implying that the vehicle’s position
is between the stop-bar and advance detectors. AIY ′

i > TUY ′
i indicates that the vehicle arrives at the

stop-bar before the indication turns yellow, implying that the vehicle’s position is between the stop
line and the end of the stop-bar detector. (A negative value of the vehicle’s position implies that the
front of the vehicle has crossed the stop line.) Based on the conditions mentioned above, vehicle i’s
position at the onset of yellow, Xpi , for the three areas can be computed using Eq. (7).

Xpi =
⎧⎨
⎩
D + AIYi ∗ Vi, AIYi < TUYi ∀i
d + AIY

′
i ∗ Vi, AIYi > TUYi,AIY

′
i < TUY

′
i ∀i

d − TUY
′
i ∗ Vi, AIYi > TUYi,AIY

′
i > TUY

′
i ∀i

(7)

Besides Xpi , the estimation of Type I DZ andoption zonedependon theminimumstoppingdistance
(Xsi ) and the maximum clearing distance (Xci ) for each vehicle. Computation of Xsi and Xci necessi-
tates estimation of theGHMmodel parameters: theminimumperception-reaction time, themaximum
deceleration rate for stopping vehicles, and the maximum acceleration rate for running vehicles. We
estimate theseparameters for eachvehiclebasedon the findingsofWei et al. (2011),where the authors
calibrated and modified the GHM model parameters based on empirical assessment of vehicle tra-
jectory data. Eq. (8), (9), and (10) summarize the calibrated values proposed by Wei et al. (2011) for
estimating the minimum perception reaction time (δi), the maximum deceleration rate for stopping
vehicles astopi , and the maximum acceleration rate for running vehicles aruni . Note that the parameters
are calibrated as functions of approach velocity of individual vehicle (Vi) and the 85th percentile speed
of intersection’s approach (V85). Interested readers are referred to Wei et al. (2011) for details on the
calibration of theGHMmodel parameters. The 85th percentile speed for thewestbound approachwas
obtained using INRIX data. INRIX provides minute-by-minute timestamps of speed and travel time on
road segments. All speed data for January and February was collected, the analysis of which yielded
38 mph (61 km/hr) as the 85th percentile speed on the intersection approach.

δi(Vi) = 0.445 + 21.478
Vi

∀i (8)
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astopi (Vi, V85) = exp
(
3.379 + −36.099

Vi

)
− 9.722 + 429.692

V85
∀i (9)

aruni (Vi, V85) = −27.91 + 760.258
Vi

+ 0.266∗V85 ∀i (10)

Let αi ∈ {0, 1} be a binary variable representing the decision of vehicle i to either stop at (αi = 0) or
run over (αi = 1) the intersection stop line, as shown in Eq. (11). Following assumptions in Wei et al.
(2011), we assume that theminimumperception reaction time is equal for stopping and running vehi-
cles. In estimation of Xsi and X

c
i , note that the GHMmodel parameters calibrated byWei et al. (2011) do

not explicitly define the limits on the deceleration rate for running vehicles and the acceleration rate
for stopping vehicles. Based on the assumptions in prior literature, we limit themaximumdeceleration
rate for running vehicles (astopcrit ) to 10 ft/s2 (Ding et al. 2016; Lu et al. 2015; Chen et al. 2021) and the
maximum acceleration for stopping vehicles (aruncrit ) to 6 ft/s

2 (Long 2000). With the assumptions above
and the knowledge of the GHMmodel parameters, Xsi and X

c
i can be computed using Eq. (12) and (13),

respectively.

αi =
{
0, SCA

′
i ∈ {RG}

1, otherwise
∀i (11)

Xsi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Vi ∗ δi + Vi2

2∗astopi

, αi = 0

Vi ∗ δi + Vi2

2∗astopcrit

, αi = 1

∀i (12)

Xci =
{
Vi ∗ γ + 0.5 ∗ aruni ∗ (γ − δi)

2, αi = 1

Vi ∗ γ + 0.5 ∗ aruncrit ∗ (γ − δi)
2, αi = 0

∀i (13)

With Xpi , X
s
i , and X

c
i computed, we can identify if vehicle i is in a specific zone based on the following

rules (Lu et al. 2015):

1. In should-go zone: if Xpi ≤ Xci ≤ Xsi or X
p
i ≤ Xsi ≤ Xci

2. In should-stop zone: if Xpi ≥ Xci ≥ Xsi or X
p
i ≥ Xsi ≥ Xci

3. In Type I dilemma zone: if Xci < Xpi < Xsi
4. In option zone: if Xsi < Xpi < Xci

The Type I DZ begins at Xsi and ends at Xci , whereas the option zone starts at Xci and ends at Xsi . For
a dynamic analysis of Type I DZ and option zone, the time of day for each actuation was discretized
into four groups: morning (5 am – 9 am), mid-day (9 am – 3 pm), evening peak (3 pm – 7 pm), and
overnight (7 pm – 5 am). Also, the days of the week were divided into two groups: weekdays and
weekends (including public holidays).

Type II DZ

Given the definitions and rule-of-thumb in the transportation literature for Type II DZ, we sought its
empirical analysis through probabilistic and travel time-based methods. Recall that the probabilistic
approach defines Type II DZ as the approach area wheremore than 10% and less than 90% of vehicles
opt to stop at yellow onset. Similarly, the widely adopted rule-of-thumb in light of the travel time-
based approach demarcates Type II DZ as an indecision zone between 2.5 and 5.5 sec upstream of the
intersection at yellow onset. With Xpi computed in the earlier section, the Type II DZ can be estimated
for varying approach velocities and time of day. Each hour’s Type II DZ boundary dynamics can be esti-
mated based on the 10th and 90th percentiles of vehicles stopping. Since only vehicles approaching
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the intersection up to a certain velocity would stop at the stop line, the dynamics of Type II DZ bound-
ary by approach velocity differs for the probabilistic and travel time-based approaches, as presented
in the results section.

Results and discussions

This section discusses the findings for DZ parameters and boundaries based on Type I and Type II
definitions.

Type I DZ parameters

At yellow onset, driving characteristics–namely approach velocity, perception reaction time, accel-
eration, and deceleration–were estimated using Equations (6), (8), (9), and (10), respectively. Table 5
summarizes the descriptive statistics of these Type I DZ parameters.

The mean and median of approach velocity at the onset of yellow were equal to the speed limit of
the approach. The mean perception reaction time was 0.89 sec, compared to 1.0 and 1.5 sec assumed
by ITE’s traffic engineering handbook (ITE 1999) and AASHTO (Click 2008), respectively. Negative val-
ues for the acceleration of the running vehicles indicate that drivers apply some decelerating force for
safety purposes when crossing the intersection at yellow onset. The mean and median acceleration
values were around 0 ft/s2, parallel to the assumptions in ITE and AASHTO. Themaximum acceleration
observedwas 5.34 ft/s2, which is still lower than themaximumacceleration limit of 6 ft/s2 proposed by
Long (2000). Themean andmedian deceleration of stopping vehicles were 9.82 and 9.89 ft/s2, respec-
tively. The ITE and AASHTO assume maximum deceleration rates of 10 and 11.2 ft/s2, respectively.
Overall, the descriptive statistics of Type I DZ parameters demonstrate a realistic estimation of these
parameters using the calibration models proposed by Wei et al. (2011).

Type I decision rule vs. actual decision taken

Asdiscussed in theprevious section, the Type I decision rule dictateswhether the vehicle is in a should-
stop, should-go, dilemma, or option zone based on the values of Xpi , X

s
i , and Xci . Of the total sample

size of 28,700 vehicles, we observed 1,042 vehicles in DZ and 348 in the option zone, indicating 4.8%
of vehicles in either of the two zones at yellow onset. An interesting observation here is the number
of vehicles in the should-stop zone that decided to run through the intersection stop line. These 2,386
vehicles account for 8.3% of vehicle arrivals at yellow onset that should have stopped, but they either
cannot make a stop or drive past the stop line anyway owing to the inherent driving behavior. Since
8.3% is a significant portion of vehicle arrivals at yellow onset, we hypothesize that the dilemma zone
protection might not be adequate at the site’s approach.

Recall that the stop/run decision for an actuation over the stop bar detector was accurately iden-
tified using a combination of signal change during actuation and occupancy time parameters during

Table 5. Summary of driving characteristics at yellow onset

Parameters
Approach

velocity (mph)
Perception reaction

time (sec)
Acceleration of

running vehicles (ft/s2)

Deceleration of
stopping vehicles

(ft/s2)

Sample size 28,700 28,700 16,281 12,419
min 16.00 0.69 −4.30 4.36
5th percentile 22.00 0.74 −3.14 6.88
25th percentile 28.00 0.79 −1.68 8.79
median 35.00 0.87 −0.51 9.89
mean 35.23 0.89 −0.24 9.82
75th percentile 42.00 0.97 0.95 10.92
95th percentile 49.00 1.10 3.00 12.44
max 59.00 1.35 5.34 13.70
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Figure 7. Type I decision rule vs. actual decision taken (weekdays).

dataprocessing. This stopbar actuation,whenmatchedwith anadvanceactuationusing theproposed
RAMD model, yielded a match-paired vehicle’s actual stop/run decision at the intersection. Figure 7
depicts the variation of the Type I decision rule vs. actual stop/run decision taken by approach veloc-
ity and time of day categories for weekdays; Figure 8 presents the same for weekends. A vehicle’s
stop or run decision while approaching the intersection depends on the approach velocity and the
vehicle’s position from the intersection stop line. Vehicles that encounter the yellow onset near the
intersection stop line tend to cross the intersection at a higher approach speed. On the other hand,
most vehicles that encounter the yellowonset far from the intersection stop line reduce their approach
speed to stop safely before the intersection stop line. Furthermore, irrespective of the time of day and
weekday/weekend, there is a combination of an approach velocity and a vehicle’s distance from the
intersection stop line that separates vehicles falling into DZ (in blue) and option zone (in red). For
instance, in Figure 7(c), the dilemma and option zones are separated on the x-axis at approximately
200 ft and the y-axis at approximately 38 mph (61 km/hr).

The ideal case where vehicles make the correct stop/run decision per the rules of Type I definition
accounts for 86.8%.Within these two ideal cases are the remaining 13.2%of vehicle arrivals that can be
categorized into three: DZ (in blue), option zone (in red), and vehicles taking Type I-contrary stop/run
decisions (in black marked ‘+’). Ideally, the DZ protection system should be targeted to these three
categories where vehicles are susceptible to either being trapped in an indecision zone or making
Type I-contrary stop/run decisions.

Variation of dilemma zone boundaries by hour

Figure 9 presents how the Type I DZ, the option zone, the Type II probabilistic DZ, and the Type II
travel time-based DZ vary along different hours of the day. The DZ boundaries defined by the Type
I and Type II definitions differ significantly. Compared to its end, the start of the Type II probabilistic
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Figure 8. Type I decision rule vs. actual decision taken (weekends).

Figure 9. Variation of dilemma zone boundaries by hour for weekdays and weekends.
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DZ (in blue) does not fluctuatemuch by hour over bothweekdays andweekends. Further, this bound-
ary increases during the day, especially during the evening peak. The Type II travel time-based DZ’s
boundary (in green) does not fluctuatemuch temporally. Notice that the probabilistic and travel time-
based definitions of Type II DZ do not overlap. Instead, there is always a margin separating the two
boundaries. Moreover, the probabilistic boundary is far from the intersection stop line compared to
the travel time-based DZ boundary.

The option zone from the Type I definition is enclosed within the Type II travel time-based DZ
boundary. The option zone (in orange) is located near the intersection stop line, which intuitively
makes sense as we observed from Figure 7 and Figure 8 that the option zone is: (a) located close to
the stop line; (b) is created at lower approach velocity, and (c) is of shorter boundary length. Also, note
that the end of the option zone, compared to the start, fluctuates more over different hours. The Type
I DZ (in red) fluctuates more on weekends than weekdays and is explicitly separated from the option
zone. The overlap of Type I DZ with the probabilistic boundary shows that the latter provides some
protection for Type I DZ.

Variation of dilemma zone boundaries by approach velocity

Figure 10presents the variation of differentDZboundaries by approach velocity, overlaid on topof the
Type I decision rule and the actual decision takenbydrivers. Eachobservation in this figure indicates an
approaching vehicle with its velocity and distance from the intersection stop line at the yellow onset.
The colors represent the Type I decision rule, while the symbols indicate the actual decision taken by
drivers. For instance, an observation labeled by a black ‘plus’ represents a vehicle deciding to cross
the intersection while the Type I decision rule dictated that the vehicle should stop; an observation
labeled by a blue ‘plus’ represents a vehicle deciding to cross the intersection while being in a Type I

Figure 10. Variation of dilemma zone boundaries by approach velocity.
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DZ; similarly, an observation labeled by a black ‘dot’ represents a vehicle that stopped before the stop
line while the Type I decision rule also dictated that the vehicle should stop. Furthermore, the Type
I DZ, option zone, Type II probabilistic DZ, and Type II travel time-based DZ are demarcated by their
respective boundaries in Figure 10.

We observe that the start and end boundaries of Type I DZ are dictated explicitly by vehicles in DZ.
A similar case is observed for the option zone. The Type I DZ boundary is wider at higher approach
velocity and narrower at lower approach velocity. The Type I dilemma and option zones converge
and tend to meet at a velocity of 38 mph (61 km/hr). This virtual point was the 85th percentile speed
observed from the analysis of INRIX data for two months. Note the vehicles arriving above or below
this velocity limit andmaking the wrong decision (in black with ‘+’). We observe that neither the Type
I DZ nor the option zone protects these vehicles frommaking Type I-contrary decisions.

The Type II probabilistic DZ is constant and does not vary by approach speed, drawing a parallel
to the findings of Rahman, Kang, and Biswas (2021). It extends from 265 ft (80.8 m) to 425 ft (129.5
m), failing to protect vehicles in the indecision zone and vehicles making Type I-contrary decisions
outside the boundary. The Type II travel time-based counterpart, on the other hand, is a linear function
of approach velocity.With awider zone boundary for higher approach speed, it also fails to provideDZ
protection to all vehicles in Type I-contrary decision zones. While Type II travel time-based and Type II
probabilistic DZ did not overlap by the time of day (refer Figure 9), there is some overlap between the
two when we account for the variation by approach velocity.

Note that the vehicles in the Type I DZ (in blue), in the option zone (in orange), and making the
Type I-contrary decision (in black marked ‘+’) are the ones in need of DZ protection at an intersection
approach. The integrated empirical analysis of both Type I and Type II definitions presented in this
study shows that none of the existing definitions are consistent in providing satisfactory protection
to vehicles approaching with either ‘indecision’ or ‘Type I-contrary decision’ at yellow onset. Our find-
ings demonstrate the need for more empirical analysis and novel data-driven dynamic models of DZ
boundary, which varies by approach speed, hourly volume, and time of day.

Practical implications

The analyses and findings in this study have significant implications for several stakeholders, including
traffic engineers and vehicle manufacturers. Traffic engineers could consider the dynamic nature of
DZ boundary in developing optimal strategies for signal control and advance detector placement.
Moreover, the importance of accurate quantification and demarcation of DZ boundary–emphasized
by this study’s findings–enables traffic engineers to understanddrivers’ stop/gobehavior anddevelop
proactive measures for mitigating red light running tendencies at signalized intersections. Similarly,
vehicle manufacturers and autonomous driving technology developers can consider the dynamics
of DZ boundaries to refine vehicle control algorithms and ensure safer decision-making in response
to the safety-critical yellow onset periods. At a broader level, this study’s findings highlight the need
to further investigate the dynamics of DZ boundary, especially using data obtained from advanced
detection sensors suchas radars andLiDARs; data fromsuch sensors couldpotentially provideaccurate
estimates of Type I DZ parameters for predicting and mitigating DZ-related risks in real-time.

While this study offers novel insights and a detailed empirical analysis of DZ using a large sample
size, it also opens avenues for future research to address its limitations and constraints. The ground-
truth values of the Type I DZ parameters are difficult to obtain with non-visual high-resolution event
data from loopdetectors. As a result, this studyused the empiricalmodels proposedbyWei et al. (2011)
to estimate the Type I DZ parameters. Ground-truth values of these parameters could be obtained by
setting up cameras upstreamof the intersection approach (Wei et al. 2011) and using eithermanual or
computer vision-based tracking. Future research could implement such a setup and test the accuracy
of estimating Type I DZparameters using data fromconnected vehicles or advanceddetection sensors
such as LiDAR. Also, the matching methodology proposed in this study only considered lane changes
to the left-turn lane but not on the through lanes. Manual observation of 7 hours of ground-truth
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videos showed that only 2% of vehicles changed lanes on the through lane during the yellow onset.
With regard toDZboundaryquantification, impacts ofweather conditions, presenceof non-motorized
users, and driver behavior changes over time are additional factors that could be covered in future
research.

Conclusions

This study empirically assessed the existing approach and definitions used to quantify DZ in an inter-
sectionapproach. Thepotential overlapbetweenType I andType IIDZboundaries and their integrated
empirical assessment was identified as a research gap, the exploration of whichwould contribute bet-
ter to our understanding of DZ. To this end, we processed high-resolution event data for two months
and proposed a novel rule-based methodology to match actuation events between the advance and
stop-bar detector locations. The proposed matching method had an accuracy of 92% and a recall
of 91%. Performance comparison with two existing analytical matching methodologies in the liter-
ature showed that the proposed matching method is more accurate and robust to the assumption of
deterministic parameters such as effective vehicle length.

Thematchingmethodologywas applied toprocess a largedataset of high-resolutiondetector actu-
ation events to obtain 28,700 samples of vehicle arrivals at the yellow onset. An empirical exploratory
analysis of the Type I DZ, the option zone, the Type II probabilistic DZ, and the Type II travel time-based
DZ led to some novel, insightful findings, which are summarized as follows:

• 86.8% of vehicles make the correct stop/run decisions per the Type I rules. The rest, 13.2% of
vehicles, either fall into an indecision zone or make a Type I-contrary stop/run decision at the inter-
sectionapproach.AnefficientDZprotection systemshould reduce theproportionof vehicles failing
into ‘indecision’ and ‘Type I-contrary decision’ zones.

• The boundaries of the Type I DZ and the option zone did not fluctuatemuch by the time of day and
hour. The Type II probabilistic DZ boundary increases during the day, especially the evening peak,
while the travel time-based boundary does not vary much with time of day.

• The probabilistic and travel time-based boundaries of Type II DZ overlap only at higher approach
velocity. Similarly, the Type I DZ and the option zone boundaries do not overlap. The Type I DZ
boundary does overlap with the Type II probabilistic DZ boundary, indicating that the latter pro-
vides some protection for DZ defined based on theminimum stopping distance and themaximum
clearing distance.

• The Type I DZ boundary is wider at higher approach velocity. Neither of the Type I zones protects
vehicles making Type I-contrary decisions. The Type II probabilistic DZ does not vary by approach
velocity. It and the travel time-based DZ fail to fully protect vehicles in the ‘indecision’ and ‘Type
I-contrary decision’ zones.

Our empirical analysis concluded that none of the existing definitions of DZ are consistent in providing
satisfactoryprotection tovehicles approaching the intersection in either ‘indecision’ or ‘Type I-contrary
decision’ zones. This novel finding underscores the need for further detailed empirical analysis of vehi-
cle arrivals and dynamic DZ boundary models that vary by approach speed, hourly volume, and time
of day. Given the analyses and findings of this study, there is a significant research prospect in using
machine learning methods and big data from advanced detection sensors or connected vehicles to
assess DZ boundary in real-time. Such an approachwill provide a detailed assessment of the relatively
understudied insights on the dynamics and accurate quantification of dilemma zone boundary.
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