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Abstract: Many transportation agencies have been deploying adaptive traffic control systems (ATCSs) to enhance the efficiency of
signalized intersections and arterial networks. However, the benefits of ATCSs vary across roadways due to factors such as traffic
volume, network configurations, and the influence of other intelligent transportation systems (ITS). Pedestrian hybrid beacons (PHBs)
are ITS utilized as pedestrian control devices, usually deployed between signalized intersections. PHBs can affect the effectiveness of
ATCSs and, hence, need to be considered during ATCS deployments and performance evaluations. This study used a corridor in Tucson,
Arizona, to evaluate the impact of PHB activations on the travel time along a corridor with an ATCS. Controller event-based data
were used to show the effects of the number of PHB activations on ATCS operations. Other factors were also examined, such as traffic
volume, number of pushbutton activations at signalized intersections, time of day, and day of the week. The results indicated that travel
time increased with PHB activations, especially during morning peaks. Two activations within five minutes showed a 126% (90 s) travel
time increase for upstream segments, and three activations saw a 38.5% (27 s) travel time increase for segments with PHB installed.
A regression analysis showed a 3.3% and 6.7% travel time increase for each PHB activation every 15 min in upstream segments and
segments with PHB installed, respectively. This study’s findings highlight the importance of considering the PHB impact for practitioners
selecting ATCS deployment sites for optimal performance. DOI: 10.1061/JTEPBS.TEENG-8661. © 2025 American Society of Civil
Engineers.

Author keywords: Adaptive traffic control systems (ATCSs); Pedestrian hybrid beacons (PHBs); Travel time; Controller event-based data.

Introduction

Adaptive traffic control systems (ATCSs) dynamically adjust signal
timing parameters, such as splits, offsets, cycle lengths, and phase
sequences, in near real-time, based on detection data and opera-
tional settings (Urbanik et al. 2015). These most widely deployed
ATCSs, such as Split Cycle Offset Optimization Technique
(SCOOT), Sydney Coordinated Adaptive Traffic System (SCATS),
Adaptive Control Software (ACS) Lite, Kadence, and In|Sync, have
proven to improve traffic conditions (Ban et al. 2014; Fontaine et al.
2015; Mitrovic et al. 2023). Despite ATCSs’ success, their effec-
tiveness can be affected by factors, such as detection layouts, traffic
conditions, network types, urban settings, and system monitoring
(Dutta and McAvoy 2010; Fontaine et al. 2015; Stevanovic et al.
2019; Tian et al. 2011). For example, ATCSs demonstrated more
significant benefits in networks experiencing moderate traffic than

those with high traffic (Stevanovic et al. 2019) and in roadways in
suburban areas than urban areas (Stevanovic et al. 2019).

Intelligent Transportation Systems (ITS) deployed in the same
corridor with ATCSs can also affect their operational performance.
Understanding the effects is crucial for determining suitable locations
for ATCS installations, as the presence of special traffic signal
operations can pose challenges for certain ATCSs (Dobrota
et al. 2020). One such ITS is Pedestrian Hybrid Beacons (PHBs),
formerly known as High-Intensity Activated CrossWalK (HAWK)
signals, used to warn and control traffic at unsignalized locations to
assist pedestrians in crossing streets or highways at marked cross-
walks (FHWA 2023). PHBs operate by bringing vehicles to a com-
plete stop at locations where they are deployed. PHB operations are
opposite to the ATCS mode of operations, which aims to promote
traffic progression and reduce travel time. There are approximately
43 states in the US that have installed PHBs, with the most installa-
tions in Arizona (DeLorenzo et al. 2019).

The widely documented benefits of PHBs on pedestrian safety
(Fitzpatrick and Park 2010; Fitzpatrick et al. 2021; Pulugurtha et al.
2018; Zhang et al. 2024) could suggest more future deployments.
Therefore, it is essential to understand the extent of the influence of
PHB activations on corridors with ATCSs for agencies to assess the
future potential of ATCS deployments along corridors with PHBs
and evaluate the impacts of their future deployments along corri-
dors with ATCSs. Currently, few studies examined the influence of
PHBs. Although one study indicated that the mobility impacts of
PHBs, such as delay and maximum queue length, may extend to
downstream and upstream intersections (Teketi and Pulugurtha
2020), no ATCSs were in operation in this study.

One potential reason for the lack of studies could be the
unavailability of PHB activation information, which can be acquired
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by connecting PHBs with traffic controllers. However, the traffic
controller event-based data (hereafter, “event-based data”) at PHBs
is rare because not all agencies archive the data due to limitations in
their databases, concerns about cost-effectiveness, or the perception
that collecting such data may not align with their operational goals
(Zhang et al. 2024).

The objective of this study is to evaluate the mobility impact of
PHB operations on ATCSs. This study uses precise PHB activation
information from the controller event-base data to show the effects
of PHB activations on travel time along segments with an ATCS.
The impact of the number of activations on segment types, includ-
ing upstream and downstream of the PHBs and segments with the
PHB, is evaluated. This study also explores how other factors,
including traffic volume, number of pedestrian calls at signalized
intersections, and temporal effects, influence ATCS operations along
the corridors with PHBs. The study results are significant in helping
transportation agencies decide whether to account for the impact
of PHBs when determining appropriate locations for ATCSs to
enhance overall performance. The findings from this study also make
agencies aware of the implications of future PHB deployments along
corridors with ATCSs.

Literature Review

Although ATCSs have been implemented worldwide and have
demonstrated a notable ability to enhance traffic conditions, their
operational effectiveness can be impacted by various factors.
Ban et al. (2014) and Fontaine et al. (2015) revealed that ATCSs
exhibited limited performance in oversaturated traffic conditions.
Similarly, Stevanovic et al. (2019) collected findings from 85 eval-
uations of ATCSs, revealing that ATCSs yielded higher mobility
benefits on networks with moderate traffic (AADT between
35,000 and 55,000) than on those with high traffic (AADT over
55,000). Additionally, several studies indicated that ATCSs showed
more significant traffic mobility improvements when previous sig-
nal timings were fixed or outdated; however, the impact was less
significant in well-designed corridors (Dutta and McAvoy 2010;
Fontaine et al. 2015; Stevanovic et al. 2019; Tian et al. 2011).

Stevanovic et al. (2019) reported that most efficiency-based
measures, such as travel time, delay, number of stops, and queue
length, showed improvement in two intersecting corridors and
mixed networks with ATCSs, whereas side-street delay worsened
by 6.3% in a single corridor with ATCS deployment. Additionally,
suburban and urban environments saw enhancements in all efficiency-
related measures with ATCS deployment, except for a 6.2% increase
in side-street delay in urban settings (Stevanovic et al. 2019).
Moreover, ATCSs demanded daily attention compared to that of
traditional time-of-day plans, given their dynamic nature in achiev-
ing the expected mobility improvements (Dutta and McAvoy 2010;
Stevanovic et al. 2019).

However, to our knowledge, none of the evaluation studies
assessed the mobility impact of PHBs at locations at which they
are deployed and their adjacent adaptive-controlled signalized
intersections. PHBs were first implemented in Arizona, with expan-
sion to more than 43 states in the United States (DeLorenzo et al.
2019). Although most studies focused on motorist compliance and
the safety effectiveness of PHBs (Arhin and Noel 2010; Fitzpatrick
et al. 2021; Godavarthy and Russell 2016), a few studies delved
into the mobility impact of PHBs. Schroeder et al. (2008) observed
that PHB signals were more effective in reducing delay than standard
pedestrian-actuated signals. Godavarthy and Russell (2016) also
found that delays for drivers at PHBswere reduced bymore than 90%
compared to those at signalized crossings. Li and Zhang (2011)

found that PHBs effectively reduced pedestrian delays under
high traffic demand. However, PHBs caused excessive delays for
pedestrians at stop-controlled intersections with typically low traf-
fic volumes compared to those with traditional crosswalks (Li and
Zhang 2011). Teketi and Pulugurtha (2020) evaluated the effect
of PHBs on operational performance measures at the mid-block
crosswalk location and the adjacent signalized intersection. How-
ever, the assessment was conducted through simulations rather than
utilizing empirical data sets.

There is a lack of comprehensive investigations into the mobility
effects, particularly concerning travel time, associated with PHBs
and their influence on nearby signalized intersections opera-
ting with ATCSs. Specifically, the effects of the number of PHB
activations, traffic volume, number of pedestrian calls for adjacent
signalized intersections, and temporal factors were not examined.
This study addresses these limitations, and its findings aim to assist
transportation agencies in making informed decisions on whether
to incorporate the impact of PHBs in their considerations when
selecting optimal locations for ATCSs.

Study Corridor

This study was based on a corridor with five signalized intersec-
tions, with an ATCS in operation along Ajo Way, from Mission
Road to Twelfth Avenue in Tucson, Arizona, as shown in Fig. 1.
Six road segments were considered, that is, the segment with PHB
installed and the associated upstream and downstream segments,
represented by the blue box in Fig. 1. The primary objective of
the ATCS along the corridor is to enhance mainline progression
by minimizing travel time and optimizing throughputs. The secon-
dary aim is to achieve traffic equilibrium by reducing delays for
side streets and pedestrians. Cycle lengths, offsets, splits, and other
parameters are not predetermined for the controller; instead, it
operates with the ATCS by detecting vehicles and making phase
omits and calls based on real-time data. Although adjustments can
be made to cycle lengths, splits, and offsets, phase sequences remain
fixed and cannot be altered. Additionally, there is no coordination

Fig. 1. Study locations.
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between PHBs and traffic signals. In this study corridor, at
pedestrian actuation, the PHB displays a flashing yellow signal
followed by a steady yellow signal for a total of approximately 8 s
to alert drivers. Then, both steady red signals are activated for an
approximate 7-s pedestrian walk interval. This is followed by alter-
nating flashing red signals during an approximate 18-s pedestrian
clearance interval.

Data Description

Three data sets were used to evaluate the mobility impact of PHBs
along the corridor with the ATCS: INRIX travel time data, controller
event-based data, and traffic volume data. The data were collected
during weekdays for six months between April and October 2022.
INRIX data were provided by the Arizona Department of Trans-
portation. Event-based data were sourced from the Tucson Depart-
ment of Traffic Mobility (TDTM), and traffic volume data were
also provided by TDTM and aggregated at 15-min intervals.

INRIX Data

INRIX data represent compiled information from millions of
GPS-enabled vehicles, mobile devices, conventional road sensors,
historical traffic flow data from transportation agencies, and various
other sources (INRIX 2023). These varied data sources are fused to
provide real-time estimations of travel time and incident informa-
tion (Kondyli et al. 2016).

The speed and travel time data from INRIX are collected per
minute per INRIX segment within Arizona. In the year 2018,
access was granted to the rich repository of INRIX travel time data
specific to Tucson, Arizona. Within the framework of the study, this
detailed travel time data were collected from six road segments: the
segments with the installed PHB and the upstream and downstream
segments, as depicted in Fig. 1.

Event-Based Data

High-resolution event-based data represent an enriched data set with
precise timestamps of various events. Sample data are provided
in Fig. 2. When a pedestrian activates the pushbutton at a PHB
location, the traffic controller logs the events, such as “Pedestrian
Call Registered,” “Walk,” and “Flashing Don’t Walk,” for each
phase until the PHB signal is no longer activated (Zhang et al.
2024). Similarly, critical events, such as “Phase Begin Green,” “Phase

Begin Yellow Clearance,” and “Phase Begin Red Clearance,” are
logged by traffic controllers at signalized intersections.

Event-based data have been collected and archived at more than
60 PHB locations in Tucson, Arizona, since 2018, including the
specific PHB location examined in this study. Additionally, event-
based data are available for most signalized intersections in Tucson,
Arizona. Using precise PHB activation information, descriptive and
statistical analyses were conducted in this study to evaluate the
impact of PHB activations on travel time in road segments with
PHB deployed and in upstream and downstream segments.

Data Summary

Table 1 summarizes the statistics of the variables evaluated in this
study. Summary statistics for downstream segments were excluded
from Table 1 and the following regression analysis due to a lack of
volume data. The response variable used in this study is the average
travel time per road segment. Explanatory variables include number
of PHB activations, the major road’s approach volume, maximum
approach volume for minor directions, time of day (AM and PM
peaks, midday, and night), day of the week [Mondays, Fridays, and
typical weekdays (Tuesdays to Thursdays)], and the number of
pushbutton activations at signalized intersections.

This study considered pedestrian pushbutton activations at the
nearest downstream intersection and the second nearest intersection
(hereafter, “nearby” and “distant” intersections). There are two pri-
mary types of pedestrian pushbutton activations at each intersec-
tion, each with different effects on the target segment. The first
type is for pedestrians crossing the major road, which is the study
corridor used. The second type is for pedestrians crossing a minor
road, which at these intersections refers to a cross-street intersecting
with the study corridor. Therefore, four variables associated with
pedestrian pushbutton activations were included in the analysis:
the number that cross a major road at the nearby intersection, the
number that cross a minor road at the nearby intersection, the
number that cross a major road at the distant intersection, and
the number that cross the minor road at the distant intersection.

Methodology

Regression analyses were used to examine the effects of PHB
activations on travel time along segments with PHB installed
and those upstream of the PHBwithin an ATCS-controlled corridor.
Previous studies showed that traditional regression models, such as

Fig. 2. Sample event-based data: (a) event-based data for PHB; and (b) event-based data for signalized intersection.
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normal, lognormal, gamma, Weibull, and finite mixture, were ex-
plored for travel time modeling and analysis (Al-Deek and Emam
2007; Guo et al. 2010; Kim and Mahmassani 2014; Pu 2011).
Travel time in this study was observed to follow a right-skewed
normal distribution. Hence, four regression models—lognormal,
Weibull, normal-normal finite mixture, and lognormal-lognormal
finite mixture—were explored, and the best-fit model was utilized
for the following analyses. Other factors, including traffic volume,
pedestrian pushbutton activations at nearby and distant downstream
signalized intersections, and temporal effects, were also included in
the regression analysis. The following sections describe the log-
normal, Weibull, normal-normal finite mixture, and lognormal-
lognormal finite mixture regression models.

Lognormal Regression Model

The traditional liner regression model was defined as follows
as Eq. (1):

y ¼ β0 þ β1x1 þ β1x1þ · · · þβnxn þ ε ð1Þ

where β0 = intercept; β1 to βn = coefficients for the response
variables (x1 to xn), such as the number of PHB activations; and
ε = error term assumed to follow a normal distribution with the
mean equal to 0 and variance of σ2. Assuming the response variable
y, that is, 15-min average travel time per road segment in this study,
follows a lognormal distribution (Pu 2011), that is, the probability
density function of y can be written as (Ajiferuke and Famoye
2015)

fðyjxÞ ¼ 1

yσ
ffiffiffiffiffiffi
2π

p exp

�
− 1

2

�
lnðyÞ − μðxÞ

σ

�
2
�

ð2Þ

μðxÞ ¼ β0 þ β1x1 þ β1x1þ · · · þβnxn ð3Þ

The expectation EðyjxÞ and the variance VðyjxÞ were
described as

EðyjxÞ ¼ exp

�
μðxÞ þ σ2

2

�
ð4Þ

VðyjxÞ ¼ ½expðσ2 − 1Þ� × ½expð2μðxÞ þ σ2Þ� ð5Þ

Weibull Regression Model

The Weibull distribution is commonly used in reliability engineer-
ing and survival analysis, for which it serves to model the time until
failure or the lifetime of a component or system (Cavalcante et al.
2023; Zhang 2016). Some studies also employed the Weibull dis-
tribution to model the travel time distribution (Al-Deek and Emam
2007). The distribution of the average travel time, y, as a function
of covariates were written as

lnðyÞ ¼ β0 þ β1x1 þ β1x1þ · · · þβnxn þ αφ ð6Þ

φ ∼ Gammað0;αÞ ð7Þ
where φ is assumed to follow the Gamma distribution,
Gammað0;αÞ; and α = shape parameter.

The effects of covariates are multiplicative on the hazard scale in
the proportional hazard model. The hazard function hðyjxÞ of the
Weibull regression model in proportional hazard form is

hðyjxÞ ¼ γyγ−1 expð−ðβ0 þ β1x1 þ β1x1þ · · · þβnxnÞÞ ð8Þ
where if the shape parameter 1 < γ < 2.6, theWeibull distribution is
positively skewed; if 2.6 < γ < 3.7, the distribution could approxi-
mate the normal distribution; if γ > 3.7, the Weibull distribution is
negatively skewed (Al-Deek and Emam 2007).

Finite Mixture Regression

The travel time is likely to exhibit sophisticated distributions due to
the impact of various traffic conditions and different seasons. Finite
mixture models have proven to be useful extensions of traditional
statistical models for effectively capturing this heterogeneity in

Table 1. Summary statistics of analysis variables

Variables

Upstream segments Segments with PHB installed

Min Max Mean Std. dev.
Count

(proportion) Min Max Mean Std. dev.
Count

(proportion)

Average travel time 28 1,110 152 65 — 40 883 174 65 —
Number of PHB activations 0 8 0.37 0.85 — 0 8 0.37 0.85 —
Approach volume for major directions 10 691 199 123 — 10 602 202 123 —
Maximum approach volume for minor directions 0 479 87 89 — 0 479 88 89 —

Number of pushbutton activations
Cross major road at the nearby intersection 0 11 0.70 1.02 0 0 11 0.70 1.01 —
Cross minor road at the nearby intersection 0 16 1.17 1.24 0 0 16 1.17 1.24 —
Cross major road at the distant intersection 0 11 0.70 1.01 0 0 11 0.70 1.02 —
Cross minor road at the distant intersection 0 16 1.16 1.24 0 0 16 1.16 1.24 —

Time of day
AM peak — — — — 1,953 (8.4%) — — — — 1,942 (8.3%)
Midday — — — — 6,839 (29.3%) — — — — 6,841 (29.3%)
PM peak — — — — 1,950 (8.3%) — — — — 1,957 (8.4%)
Night — — — — 12,617 (54%) — — — — 12,616 (54%)

Day of the week
Mondays — — — — 4,445 (19%) — — — — 4,437 (19%)
Typical weekdays (Tuesdays to Thursdays) — — — — 14,170 (60.7%) — — — — 14,185 (60.7%)
Fridays — — — — 4,744 (20.3%) — — — — 4,734 (20.3%)

Note: Data was aggregated at 15-min intervals.
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travel time data during modeling and analysis (Kim andMahmassani
2014). The overall probability distribution fðyjxÞ is then obtained by
mixing those component distributions as follows (Guo et al. 2010):

fðyjxÞ ¼
XK
k¼1

ωkfkðyjxÞ ð9Þ

where k = predefined number of components in this study;
fkðyjxÞ = conditional probability density function of y given com-
ponent k, that is, the kth mixture component fkðyjxÞ represents
the distribution of travel time corresponding to a specific traffic
condition, such as congested state; and ωk = positive mixture
coefficient, representing the probability of each component.

This study tested two types of two-component mixture distri-
butions on the travel time data: normal-normal and lognormal-
lognormal, and the probability density function of each is shown
in Eqs. (10) and (11), respectively

fðyjxÞ ¼ ω1

1

σ1

ffiffiffiffiffiffi
2π

p exp

�
− 1

2

�
y − μ1ðxÞ

σ1

�
2
�

þ ð1 − ω1Þ
1

σ2

ffiffiffiffiffiffi
2π

p exp

�
− 1

2

�
y − μ2ðxÞ

σ2

�
2
�

ð10Þ

fðyjxÞ ¼ ω1

1

yσ1

ffiffiffiffiffiffi
2π

p exp

�
− 1

2

�
lnðyÞ − μ1ðxÞ

σ1

�
2
�

þ ð1 − ω1Þ
1

σ2

ffiffiffiffiffiffi
2π

p exp

�
− 1

2

�
lnðyÞ − μ2ðxÞ

σ2

�
2
�

ð11Þ

where σ1 and σ2 = shape parameters of each distribution.

Model Assessment

Akaike information criterion (AIC) and McFadden pseudo R2 were
used to compare the models and select the best model fit, as shown
in Eqs. (12) and (13)

AIC ¼ −2 × LLθ þ 2 × P ð12Þ

McFadden pseudo R2 ¼ 1 − LLθ

LL0

ð13Þ

where LLθ = log-likelihood at convergence; and LL0 = log-
likelihood of the constant-only model.

The mean absolute deviance (MAD) and mean square predic-
tion error (MSPE) were also calculated to compare the prediction
performance of all fitted models on the validation data set. The data
were divided into training (80%) and testing (20%) data sets. The
training set was utilized for model development, while the testing

set was employed to assess the prediction performance of the fitted
models. The equations used to calculate MSPE and MAD are

MSPE ¼ 1

N × ȳ

X
ðyi − ŷiÞ2 ð14Þ

MAD ¼ 1

N × ȳ

X
jyi − ŷij ð15Þ

where N = sample size of the validation data set; ȳ = observed
average travel time; and yi and ŷi = observed and predicted average
travel time for the ith row in the data set.

Results and Discussion

Descriptive Analysis

Event-based and INRIX travel time data used in this section for
each road segment were aggregated into five-minute intervals to
ensure a sufficient number of PHB activations within each interval,
following the approach taken in previous studies (Haule et al. 2021;
Hojati et al. 2016). A matched case-control design was used in the
descriptive analysis, considering travel time could be influenced by
several factors concurrently (Wali et al. 2018; Yu and Abdel-Aty
2013). An interval was labeled “case” if at least one PHB activation
occurred within the five-minute interval. An interval was labeled
“control” if no PHB activations occurred within the five-minute
interval. Given that more controls than cases are expected, four
“control” instances were paired with each corresponding “case”
based on the following criteria: identical time intervals (e.g., the
“case” and four “control” instances happened from 8:00 a.m. to
8:05 a.m.), matching days of the week, and alignment with
the same season. This matching process aimed to mitigate poten-
tial influences from external factors, such as volume and temporal
effects.

Fig. 3 illustrates the number of 5-min intervals according to the
amount of PHB activations across four analysis periods: AM peak,
midday, PM peak, and night. These analysis periods were deter-
mined based on regular peak periods in Tucson, Arizona. Based on
the observation, the maximum number of PHB activations within
any 5-min interval was four. Cases with three PHB activations
during the PM peak and Night periods, as well as intervals with
more than four activations, were excluded from this section due to
limited sample size (less than 15).

Impact of PHB Activations on Travel Time for Upstream
Segments
Fig. 4 compares the average travel time with and without PHB
activations for upstream segments. The top and bottom rows of

Fig. 3. Total number of aggregated time intervals.
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each graphic show boxplots and cumulative distribution function
plots, respectively, depicting travel time for both “case” and “control”
groups, categorized by the number of PHB activations across
various evaluation periods. Additionally, p-values fromWelch t-tests
for comparison groups were included in the boxplots.

During AM peaks, travel time with PHB activations was stat-
istically significantly longer than those without PHB activations,
irrespective of the frequency of PHB activations within five-minute
intervals. Notably, the most significant impact on travel time was
observed with two PHB activations within five-minute intervals,
resulting in a 126% (90 s) travel time increase compared to the 75th
percentile. One potential explanation could be that when PHBs are
activated, vehicles are required to come to a complete stop. This can
create a shockwave that propagates backward to upstream vehicles
(Gao et al. 2019).

In Midday periods, travel time with PHB activations demon-
strated statistical significance compared to those without PHB
activations (when PHB was activated two or three times) based
on t-test results. However, the values of travel time did not display
a significant difference regardless of the frequency of PHB activa-
tions within five-minute intervals. During PM peaks and Night
periods, no significant difference was observed between travel time
with and without PHB activations.

Impact of PHB Activations on Travel Time for Segments
with PHB Installed
Fig. 5 compares the average travel time with and without PHB
activations for the road segments with one PHB installed. During AM
peaks and Midday periods, travel time with PHB activations was
statistically significantly longer than those without PHB activations
regardless of the frequency of PHB activations within five-minute
intervals. The most significant impact was observed with three
PHB activations within five-minute intervals during AM peaks and

Midday periods, resulting in a 38.5% (27 s) and 39.5% (25 s)
increase, respectively, from the medians. The potential reason could
be that vehicles resume from a stopping or reduced speed position
after pedestrians have crossed, leading to a delay in recovering
to their original speed. No significant difference was observed
between “case” and “control” groups in PM peaks and Night
periods.

Impact of PHB Activations on Travel Time for Downstream
Segments
Fig. 6 shows the average travel time with and without PHB
activations for downstream segments. The travel time with PHB
activations was significantly longer than that without PHB acti-
vations during AM peaks and Midday periods. The increase in
travel time for downstream segments was comparatively lower
than what was observed along segments with PHB and upstream
segments. This could potentially be because downstream vehicles
have already regained their original speed. Additionally, upstream
segments tended to experience slightly higher congestion than
downstream segments. Moreover, no significant difference was ob-
served when PHBs were activated during PM peaks and Night
periods.

Factors Affecting Travel Time

Factor Selection and Model Assessment
The effects of the number of PHB activations on travel time and the
influence of other factors, such as volume and temporal effects,
were evaluated using a regression analysis. Due to the resolution
limitation of the volume data, all data were aggregated into 15-min
intervals in this section. Initially, predictors such as the number of
PHB activations, approach volume of major directions, maximum
approach volume of two minor directions, total green time for

Fig. 4. Boxplots and cumulative distribution function plots for average travel time on upstream segments.
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major roads at upstream and downstream signalized intersections,
number of pushbutton activations at upstream and downstream
signalized intersections, day of the week, evaluation period (AM
and PM peak, Midday, and Night), segment length, and segment
location (upstream, downstream, and the segment with PHB installed)

were considered. The variation inflation factor (VIF) was calculated
to verify the absence of multicollinearity and to ensure no signifi-
cant correlations between predictors in the data. Total green time,
segment length, and segment location were excluded because VIF
values were larger than four.

Fig. 5. Boxplots and cumulative distribution function plots for average travel time on segments with PHB installed.

Fig. 6. Boxplots and cumulative distribution function plots for average travel time on downstream segments.

© ASCE 04025025-7 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2025, 151(5): 04025025 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

A
R

IZ
O

N
A

,U
N

IV
E

R
SI

T
Y

 O
F 

on
 0

3/
25

/2
5.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Regression models were separately developed for the upstream
segments and segments with PHB installed. Four distributions,
that is, lognormal, Weibull, mixture normal-normal, and mixture
lognormal-lognormal, were explored in the regression models.
The McFadden pseudo R2 and AIC were used to evaluate model
fits, whereas MAD and MSPE were used to assess the prediction
performance. Table 2 shows the results of the model comparisons.
In both upstream segments and segments with PHB installed,
lognormal regression models exhibited a higher McFadden pseudo
R2 and lower AIC, MAD, and MSPE values. Therefore, lognormal
regression models were employed to assess the impact of the se-
lected predictors on travel time for both upstream segments and
segments with PHB installed.

Results for Upstream Segments
The lognormal regression model results for upstream segments are
presented in Table 3. The reference groups for the time of day and
day of the week variables are night and typical weekdays (Tuesdays
to Thursdays), respectively. The results show that, as the number of
PHB activations increased, upstream segments experienced longer
travel time. Given a one-unit increase in the number of PHB activa-
tions every 15 minutes, the average travel time in the upstream seg-
ments increased by approximately 3.3%. To some extent, these
findings are consistent with previous research that evaluated the
mobility impact of PHBs on adjacent signalized intersections

without ATCSs (Teketi and Pulugurtha 2020). Although it was
unclear whether the signalized intersection was upstream or down-
stream of the PHB, Teketi and Pulugurtha (2020) suggested that in-
creased pedestrian volume at PHB locations could increase the delay
and queue length at an adjacent signalized intersection. This queue
length and delay at a signalized intersection could cause longer travel
times on segments upstream of the PHB location. Another potential
reason is that PHBs could be associated with spillover or spillback
effects at adjacent intersections. Unlike the previous study, the effects
of the PHB impact in this study were based on the actual activations
rather than pedestrian volume considering that multiple pedestrians
can cross a street at a single activation.

The number of pushbutton activations at signalized intersections
was positively related to the average travel time, with the most impact
by pushbutton activations (1.9%) at the nearby intersection from mi-
nor directions. This could be because a higher number of pushbutton
activations at signalized intersections, particularly from minor direc-
tions, could disrupt the coordination of major directions, leading to
increased travel time. In contrast, the increase in approach volume
from both major and minor sides had a minimal impact on travel time.
Given a one-unit increase in major approach volume and maximum
minor approach volume, the average travel time on the upstream seg-
ments increased by approximately 0.06% and 0.13%, respectively.
One potential reason for this could be that the optimization algorithm
of the ATCS is primarily focused on maximizing throughputs.

Table 2. Results of model assessment measures

Models Lognormal Weibull Finite mixture (normal-normal) Finite mixture (lognormal-lognormal)

Upstream segments
McFadden pseudo R2 0.45 0.06 0.11 0.21
AIC 66 1,940 1,611 270
MAD 21 34 47 32
MSPE 2,941 3,519 6,821 4,217

Segments with PHB installed
McFadden pseudo R2 0.54 0.06 0.08 0.19
AIC 92 1,952 1,713 214
MAD 25 34 41 31
MSPE 2,597 2,825 4,579 3,382

Note: PHB = pedestrian hybrid beacon; AIC = Akaike information criterion; MAD = mean absolute deviance; and MSPE = mean square prediction error.

Table 3. Summary of model results

Predictors

Upstream segments Segments with PHB installed

Coef. Std. error P-value Coef. Std. error P-value

Constant 5.9940** 0.1631 0.0000 4.817** 0.0029 0.0000
Number of PHB activations 0.0325** 0.0019 0.0000 0.0674** 0.0018 0.0000
Major approach volume 0.0006** 0.0000 0.0000 0.0008** 0.0000 0.0000
Maximum minor approach volume 0.0013** 0.0000 0.0000 0.0010** 0.0000 0.0000

Number of pushbutton activations at signalized intersections
Cross major road at the nearby intersection 0.0181** 0.0020 0.0000 0.0078** 0.0020 0.0000
Cross minor road at the nearby intersection 0.0195** 0.0017 0.0000 0.0081** 0.0016 0.0000
Cross major road at the distant intersection 0.0050** 0.0021 0.0200 0.0134** 0.0020 0.0000
Cross minor road at the distant intersection 0.0110** 0.0017 0.0000 0.0214** 0.0017 0.0000

Four evaluation periods
Midday −0.0510** 0.0043 0.0000 −0.0300** 0.0040 0.0000
AM peak 0.0733** 0.0065 0.0000 0.0391** 0.0060 0.0000
PM peak 0.1044** 0.0066 0.0000 0.1379** 0.0062 0.0000

Time of day
Monday −0.0240** 0.0049 0.0000 −0.0178** 0.0047 0.0000
Friday 0.0113** 0.0048 0.0200 0.0046 0.0046 0.3300

Note: **Statistically significant at the 95% confidence level; Coef. = coefficient; and Std. error = standard error.
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Relative to the Night periods, AM and PM peaks were associ-
ated with an increase in travel time by approximately 7.3% and
10.4%, respectively. Typically, heavier traffic occurs during AM
and PM peaks than during Night periods, resulting in higher travel
time than at nighttime. However, Midday periods were associated
with a decrease in travel time by approximately 5.1%. Additionally,
compared to typical weekdays, Mondays were associated with a
decrease in travel time by approximately 2.4%, whereas Fridays
were associated with an increase in travel time by 1.1%. Fridays
commonly experience higher travel volumes than other weekdays,
potentially increasing travel time. Mondays unexpectedly showed
shorter travel times than those on typical weekdays in the regres-
sion analysis; however, this corridor previously displayed a pattern
of slightly shorter travel time on Mondays.

Results for Segments with PHB Installed
The lognormal regression model results for segments with PHB
installed are presented in Table 3. The reference groups for the time
of day and day of the week variables are night and typical weekdays
(Tuesdays to Thursdays), respectively. As the number of PHB
activations increased for the segments with PHB installed, the
segments experienced longer travel time. Given a one-unit increase
in the number of PHB activations every 15 minutes, the average
travel time in the segments with PHB installed increased by approx-
imately 6.7%. The number of pushbutton activations at signalized
intersections was positively related to the average travel time, with
the most impact by pushbutton activations (2.1%) at the distant
intersection from minor directions. Similarly, given a one-unit
increase in major approach volume and maximum minor approach
volume, the average travel time increased by approximately 0.08%
and 0.01%, respectively. Relative to Night periods, Midday periods
were associated with a decrease in travel time of approximately 3%.
However, AM and PM peaks were associated with increased travel
time by approximately 3.9% and 13.8%, respectively. Additionally,
compared to typical weekdays, Mondays were associated with a
decrease in travel time by approximately 1.8%, whereas Fridays
were not statistically significant in the model. The findings from
the segments with PHB installed exhibited a similarity to the
findings regarding the impact on upstream segments.

Conclusions

Adaptive traffic control systems (ATCSs) have observed widespread
deployment and have demonstrated remarkable effectiveness in
enhancing traffic mobility. However, various factors, including
detection layouts, traffic conditions, network types, urban settings,
and daily monitoring, can influence the extent of mobility improve-
ments achieved by ATCSs. Although PHBs serve as crucial pedestrian
control devices utilized nationwide, their impact on the mobility
performance of ATCSs has gone unexplored. One potential reason
for this gap was the lack of valuable PHB activation data because
not all agencies collect such information.

Understanding the influence of PHBs on the mobility perfor-
mance of ATCSs is critical for identifying appropriate locations
for ATCS installations, given that the implementation of specialized
traffic control devices, such as PHBs, can present challenges for
certain ATCSs. This study employed descriptive and lognormal
regression analyses utilizing PHB activation data to evaluate the
mobility effects of PHB activations on road segments next to sig-
nalized intersections with ATCSs. The descriptive analysis consid-
ered segments with installed PHBs and upstream and downstream
segments. Regression models were developed for segments with
PHBs installed and upstream segments.

The descriptive findings revealed a consistent trend in which the
average travel time was longer with PHB activations than periods
without activations, particularly during AM peaks. Specifically,
two activations within five minutes resulted in a 126% (90 s) in-
crease in travel time for upstream segments, whereas three activa-
tions within the same timeframe led to a 38.5% (27 s) increase for
segments with PHBs. During Midday, segments with PHBs exhib-
ited a 39.5% (25 s) average travel time difference between periods
with and without PHB activations. Regression analysis further
supported these findings, indicating that an increase of one PHB
activation every 15 min corresponded to an approximate 3.3% and
6.7% increase in travel time for upstream road segments and
segments with PHB installed, respectively.

Moreover, using pushbuttons at the signalized intersections,
particularly fromminor directions, increases travel time for upstream
PHB segments and segments with PHB installed. Traffic volume had
a limited impact on travel time for these road segments. Regarding
time of day, during AM and PM peaks, travel time for upstream
segments and segments with PHB installed was typically higher than
that for Night periods. Regarding the day of the week, Mondays gen-
erally saw shorter travel times, and Fridays generally saw longer
travel times than typical weekdays (Tuesdays to Thursdays) for up-
stream segments and segments with PHB installed.

The observed trends in this study indicate that PHB activations
notably influenced travel time, particularly in upstream segments
and segments with PHB installed. When practitioners select sites
for deploying ATCSs, incorporating PHB usage as a crucial factor
may help ensure optimal performance. It is also critical to account
for the PHB operational characteristics, including the crossing time,
interval length, and lockout durations, which could affect vehicle de-
lays and travel times. Optimizing these PHB operational characteris-
tics based on location-specific factors such as geometry, pedestrian
volume, and demographics may help balance pedestrian safety and
traffic mobility.

Additionally, practitioners may account for the mobility effects
of PHBs when designing systems or refining algorithms. Incorpo-
rating the pushbutton information of PHBs into ATCS algorithms,
especially by syncing PHB pushbutton data with the closest upstream
and downstream vehicle signals, may enable better coordination be-
tween PHBs and vehicle signals. Furthermore, installing pedestrian
detection systems at PHB locations to track whether pedestrians
have crossed the road and synchronizing this detection information
with the traffic controller or ATCS optimization algorithms may
reduce unnecessary pedestrian clearance time, balancing pedestrian
safety and traffic mobility.

This study acknowledges several limitations, including the lack of
diverse scenarios, such as multiple PHBs installed on segments, sev-
eral evaluation sites, and corridor-level assessments. Analysis of the
PHB effects on different site characteristics could enhance the com-
prehensiveness of the evaluation. This study also focused on a single
type of ATCS specific to the corridor; incorporating a variety of
ATCS types could reveal different trends in how PHBs influence
operational performance. Furthermore, the detection layout of the
ATCS was not disclosed by the vendor. Accessing and utilizing in-
formation on the detection layout of the adaptive layout could be a
focus of future studies and could provide further insights into the
interaction between PHBs and the ATCS. Comparing the results
of adaptive operations with those of similar coordinated operations
could be a valuable future direction, especially for evaluating whether
adaptive systems provide additional advantages. Nevertheless, this
study contributes to the body of knowledge by demonstrating the
notable impact of PHBs on corridors with ATCSs. These results
could help agencies consider the deployments and configurations
of PHBs and ATCSs.
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